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A special code describing transport of neutral hydrogen atoms in a hydrogenic plasma 
has been written. Test comparisons with solutions based on a neutron transport code show 
that the accuracy is good and the execution time is improved by a factor of six. The code 
accepts arbitrary, smooth electron and ion density and temperature profiles. Maximum 
temperatures permitted for accurate results are about 5 keV. 

1. INTRODUCTION 

The interaction of neutral hydrogen atoms with the background hydrogenic plasmas 
is an important component in the physics of tokamak plasmas. These neutrals affect 
both the particle and energy balance of the plasma, providing a source of new plasma 
and a channel for cross field heat transport. In addition, hot neutrals which leave the 
plasma volume can interact with the wall of the plasma chamber, sputtering impurities 
into the plasma and (in reactors) possibly damaging the wall. Finally, these hot 
neutrals can also be used for plasma diagnostics. Accordingly, a description of 
neutral transport is of interest to surface physicists, plasma diagnosticians, and 
builders of plasma transport codes. 

The problem of netural hydrogen transport is very similar to that of neutron and 
photon transport. Thus, at first glance, it would seem to require little work to adapt 
one of the latter codes to our present problem. (Indeed, this has been advocated [l] 
and is being carried out at Oak Ridge National Laboratory [2].) However, since 
such codes usually run as a complete program, rewriting them into a subroutine for 
a plasma transport code is not a trivial undertaking. More importantly, these codes 
tend to be rather slow, since they are designed to solve the Boltzmann transport 
equation including the complicated neutron collision terms. The neutral behavior 
is governed by very simple cross sections; consequently, one can create a much faster, 
more compact code by writing a special-purpose routine based on an integral transport 
equation. (According to Hogan’s review of plasma codes [3], this do-it-yourself 
approach seems to have been taken by most fusion groups that have written plasma 
transport codes.) 

A neutron transport code has, however, been used to check the results of the present 
work. The agreement is good, and the test runs confirm that the special-purpose code 
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is at least a factor of six faster. Since the neutral code is the slowest major element 
in the plasma transport code, this results in a significant improvement in execution 
time for that code. 

At present, the code has the following features. Arbitrary smooth electron and ion 
density and temperature profiles are allowed. The calculation can be done for any 
hydrogen isotope. The code can calculate the neutral number density n(r), the neutral 
average energy w,(r) = (mv2f(r, v)/3n(r)j and the phase space distribution function 
at the plasma edge of those neutrals whose velocities are outwardly directed. The 
neutral interaction with the wall is modeled as a diffuse reflection in which the 
incoming neutral is assumed to thermally accommodate with the wall and thus to 
return at the wall temperature. The code is limited to electron and ion temperatures 
below about 5 keV by the assumptions made about the ionization rates. 

The discussion of the code will be organized in the following manner. In Section 2, 
the integral equation will be obtained from the Boltzmann transport equation, while 
in Section 3, the methods used to program the discrete form of the integral equation 
will be discussed. Some of the programming methods used to speed execution are 
discussed in Section 4, while Section 5 closes the paper with a comparison of the 
results of the present code with a neutron transport code. 

2. INTEGRAL EQUATION 

To properly formulate the problem of neutral hydrogen transport, the Boltzmann 
equation must be used. The scale length of the background plasma can be shorter 
than the neutral mean-free paths for ionization and charge exchange, which makes a 
treatment based on the moment (fluid) equations questionable. [Such a treatment is 
especially poor for low density plasmas (1013 cm-3 density) in the smaller of present- 
day devices (dimensions 10 to 20 cm).] 

Since present tokamak minor radii are tens of centimeters, and since the plasma 
transport time scale is milliseconds or longer, the steady-state Boltzmann equation is 
appropriate for the neutrals. Considering the cross sections given by Freeman and 
Jones [4], the dominant interactions for neutrals in hydrogen plasmas with electron 
and ion temperatures below about 5 keV are ionization by electron impact and charge 
exchange with ions. (We assume there are sufficiently few neutrals in the system that 
their self interactions can be neglected.) This leads to the following steady-state 
kinetic equation 

v . Vf(x, v) = - \ / v - v’ 1 a&(x, V’) f(X, v) d3v’ 

+sl v - v’ I %Jf(X, v’>h(x, v) - f(x, V)fi(X, v’)] d3v’ (1) 

wheref, fe , and fi are the neutral, electron, and ion distribution functions, respectively, 
and uen and cr,, are electron ionization and charge exchange cross sections, respec- 
tively. 
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In principle, the right-hand side of Eq. (1) should also include terms describing 
the interaction of the neutral atoms with the other ions that may occur in the plasma 
(e.g., oxygen, carbon, etc.). Charge exchange is the most important of these. Unfor- 
tunately, there are no cross sections available for charge exchange with highly stripped 
ions in the energy range of interest for present-day machines (E 5 1 keV). Thus, 
in the absence of knowledge, these terms were left out. 

For roughly equal energies, the electrons have much greater speeds than the 
neutrals. Accordingly, the ionization rate coefficient, 01, is independent of neutral 
velocity. In addition, as given in Freeman and Jones [4], vu,,(v) is a slowly varying 
function of energy E = mu”/2 for E < 20 keV. Consequently, it will be taken to be a 
constant C. Under these assumptions, Eq. (1) becomes 

v * Vj(x, v) = --A(x).& v) + B(x) P(x, v) n(x) (2) 

where A(x) = n,(x) CL(X); B(x) = n%(x)C; and n(x), n,(x), and n,(x) are the neutral, 
electron, and ion number densities, respectively. Here, P(x, v) is the ion velocity 
distribution function normalized to unity, i.e., S d3vF(x, v) = 1. 

The approximations of the cross sections are fundamental to the method used here. 
Since the reaction rates are the same for each neutral, regardless of its velocity, it is 
not surprising that it is possible to reduce Eq. (2) to an integral equation for neutral 
number density. (These approximations are not new; they have been used at least 
twice before [5, 61.) 

We will assume that the plasma looks like an infinitely long cylinder of radius a, 
and we will take A(x), B(x), and F(x, v) to be functions only of radius. Accordingly, 
the effects of poloidal curvature of the plasma will be properly handled, but variations 
due to toroidal curvature will not be. 

It is now convenient to transform the differential operator in Eq. (2) into cylindrical 
coordinates. Taking advantage of the cylindrical symmetry and axial invariance, 
we find [7] 

V’Vf = a! vr cos cd ar v- - : sin w - au (3) 

where r = (x2 + y2)1/2, w = tanl(v,juz) - tan-Q/u), 0,. = (vZ2 + ay2)1/2. Here 
(x, A 4 and (G ,t~ $I, a,) are the usual Cartesian coordinates and velocity components, 
respectively. From now on, we will think off = f(r, w, v, , v,). 

Before Eq. (2) can be uniquely integrated, we must specify boundary conditions. 
Unfortunately, there is a lack of experimentally measured neutral reflection coeffi- 
cients for surfaces and energy ranges of interest. Consequently, the simplest boundary 
condition that meets the intuitive requirements has been chosen, the so-called diffuse 
reflection condition, 
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wheref,(v) and h,(v) are given distribution functions and where r+(f) is the one-sided 
radial flux, 

r+(f) = I* do, j+* do, jr” dw v,2 cos wf (a, w, t’, , v,). 
0 -03 -7ri2 

(5) 

We flux normalize h,(v) so that 

In Eq. (4), the distribution functionf,(v) represents the neutral source on the wall 
due to plasma that is recombining there, while the other term models neutral collisions 
with the wall. In general, neutral-wall collisions in this model do not conserve 
particles or energy. By choosing R D = 1, particle conservation is assured. Since 
neutrals generally lose energy on collision, we do not require an energy conserving 
model. 

Notice that Eq. (4) is a linear superposition of two known source terms,f, and h, . 
Only the coefficient I’+(f) is unknown. Since Eq. (2) is linear in f (x, v), we will solve 
Eqs. (2) and (4) for a fixed R, # 0 by first solving two problems with R,, = 0 (one for 
each source term), and then taking the proper superposition of the two solutions. 

We can obtain the integral equation from Eqs. (2) and (4) in the manner shown in 
Appendix A. The result for generalf,(v) and F(r, v) is given there; the case that is of 
most interest is when these distribution functions are Maxwellian. For this latter case, 
we find 

n(r) = h(r) + joa 4 &J, r> 4~) (7) 

where 

h(r) = $5 1:” dw [Gl ( A+(rt,” w, ) + G1 ( “(:: w) )], 
K(p 7 r) = -!3) 

dT v&) s 7712 de 
o (~5" - k2 sin2 W2 

x 
[ ( 

G A+@> 9 P<, 8) 
0 v&p) 

(8) 

(9) 

P> = max(f, r>, p< = min(p, r>, 
‘4.(p, 9 p< 9 4 = i ATKf>2 - pc2 sin2 8)lj2, p; sin 01 f A&< cos 8, p< sin e)l, (fo) 

A&r, Y> = jz df 4(P + Y~Y’~I> (11) 
0 

G,(x) = --$$= jam d7 qn exp(-v2 - xlrl). 

Here, the velocities vw and v&r) are the thermal velocities info(v) and F(r, v), respec- 
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tively. The factor n, is the density of neutrals associated with the source termfo(v). 
It can be determined from the equation 

(13) 

where r, is the outgoing plasma flux at the wall and represents plasma recombination 
while nb is any additional background neutral density that the user wishes to specify. 

The numerical solution of the problem posed by Eqs. (7)-(13) is the subject of the 
next section. Here we wish to conclude by indicating how one can obtain other 
quantities of interest once n(r) is known. 

For those who work with plasma transport codes, the average neutral energy is of 
interest. This is the term that appears in the ion-neutral energy exchange term and is 
defined as 

(14) 

Using the form for f(r, v) found in Appendix A, a straightforward calculation yields 

where T,(r) = m&(r)/2 and TW = mvw2/2. The functions hT(r) and K,(p, r) are 
identical in form to h(r) and K(p, r) except that the G,‘s and G,‘s are replaced by GQs 
and G2’s, respectively. 

For plasma diagnostics and surface physics applications, one also wishes to know 
the distribution function of outgoing neutrals at the wall. This is given by 

where ~(0 = (t2 + a2 sin2 w)l12, rl -= a cos w, and r, = a sin W. 
Thus, we have shown that the original Boltzmann transport equation can be 

reduced, in this case, to a one-dimensional integral equation. This eases the numerical 
problem considerably, since we seek n(r) instead of f(r, v). Once n(r) is known, any 
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quantity of interest can be computed by evaluating the appropriate integral. As 
mentioned previously, this great simplication would not have been possible without 
the assumptions made about the rate coefficients B and C. 

3. DISCRETE APPROXIMATIONS 

For numerical work, the integral equation (7) must be written as a matrix equation 
by approximating the integral as a sum by means of a mechanical quadrature. If II 
abscissas are used in the quadrature, the work necessary to evaluate K(p, r) scales as n2. 
Consequently, it behooves us to choose a Gaussian quadrature [8], since this gives the 
best accuracy for the fewest number of base points. 

Gaussian quadrature formulas do not, of course, have equally spaced abscissas. 
Accordingly, the internal base points in the code will not correspond in general to the 
grid points used, for example, in the plasma transport code. Input quantities such as 
electron and ion densities and temperatures will have to be interpolated to find their 
values at the internal base points; after the solution is complete another interpolation 
will be necessary to find neutral density and average energy values at the external 
points. However, this is a small price to pay for the great savings in execution time 
that a reduction in n brings. (In a slab geometry neutral code that I have written, 
changing from trapezoidal rule to Gaussian quadratures reduced execution time by a 
factor of 10.) 

Most Gaussian quadratures use base points internal to the interval of integration. 
This is inconvenient, since we wish to know quantities such as n(0) or n(a). For this 
reason, a Lobatto quadrature [8] was chosen, which uses the endpoints of the interval 
as two of the base points. 

Unfortunately, due to the behavior of K(p, r) as p -+ r, we cannot simply substitute 
the quadrature sum for the integral in Eq. (7). Analysis of the expression in Eq. (9) 
for the kernel K(p, r) shows it to have a logarithmic singularity in the limit p + r. 
To cope with this problem, Eq. (7) can be modified to read 

n(r) [ 1 - IOU dp K(r, P)] = h(r) + Joa dp NP, r) n(p) - K(r, p) n(r)]. (17) 

The integral on the right-hand side is now well behaved and the Lobatto quadrature 
can be applied in a straightforward manner. The integral on the left-hand side can be 
done using quadrature formulas developed by Krylov and Paltsev [9]. (The appearance 
of the unknown function n@) in the integrand in Eq. (7) makes it difficult to apply 
these latter formulas to that integral directly.) 

The discrete form for Eq. (7) can now be written as 

n(ri> [ 1 - Z(ri) + c wjKtri , rd] = h(rJ + 1 wjK(rj , ri) n(rJ 
j#i j+i 

(18) 
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where ri and wi (i = 1, 2,..., n) are the abscissas and weights for the Lobatto 
quadrature and where 

I(r) = sa dp W-, P>. 
0 

Having obtained the matrix form in Eq. (18), we now seek to solve for n(r#). This 
could be done by direct elimination, since the usual value of rz is 22. However, to 
preclude problems with roundoff, an iterative solution method, normalized Gauss- 
Seidel iteration, was chosen. This is similar to the usual Gauss-Seidel method [lo], 
but after each complete iteration, the new solution vector n(rJ is multiplied by a 
constant that insures particle conservation. This should speed up convergence. (See 
Honeck [l l] for tests of an analogous scheme.) The detailed derivation of the con- 
servation integral is given in Appendix B. Since the calculation of the matrix K(r, , ri) 
essentially determines the execution time, this refinement of renormalizing is perhaps 
not really necessary. 

As was mentioned in the previous section, the numerical solution first obtained is 
that appropriate for a system with R, = 0. We now wish to effect the linear super- 
position that leads to the complete solution. This is particularly easy at present, since 
h,(v) in Eq. (4) is taken to be proportional to fo(v). This means that the RD = 0 
solution and the RD f 0 solution simply differ by a constant factor, which can be 
determined from Eq. (4). For the case thatfo(v) and F(r, v) are Maxwellian, a straight- 
forward calculation gives the constant factor y to be 

where 
y = (1 - R,Cl)-1 (20) 

The original solution must be multiplied by y to become the RI, # 0 solution. 
Solutions for the cases with h,(v) different fromfo(v) would run almost as rapidly 

as the present one, since the iterative solution is much faster than evaluating K(r, , rJ. 
However, in the absence of information on what h,(v) should be, the simpler path 
was chosen. 

4. PROGRAMMING CONSIDERATIONS 

As is obvious from the definition of K(p, r) in Eqs. (9)-(12), efforts to compute 
A&X, y) and G,(x) as rapidly as possible will be well repaid. Each of these functions 
must be called roughly ten thousand times to evaluate the K(ri , ri) matrix. 



NEUCG: TRANSPORT CODE FOR HYDROGEN 95 

Since G,(x) is a real function of a real variable, it is quite amenable to the usual 
approximation techniques. Quick, accurate polynomial and rational Chebyshev 
approximations have been developed using the techniques given by Cody et al. [12]. 
These are used for 0 < x < 10, while the asymptotic expansion [13] is used for larger 
values. 

As a function of two variables that is also implicitly dependent on the electron and 
ion density and temperature profiles, the calculation of A&, v) appears to be much 
more difficult. Actually, that very dependence on the physical parameters can be made 
the basis of a fast algorithm by taking advantage of the fact that A(r) is a smooth 
function of r. Accordingly, it is reasonable to approximate it as a power series in r 

A(r) = fJ a,r*". 
?l=O 

(22) 

Only even powers are necessary since the electron and ion densities and temperatures 
are cylindrically symmetric. 

With this representation, we may write 

AT[(p2 - ro2)1/2, r,] = fJ a,r,2"+%,(p/ro). 
?I==0 

(23) 

The b, satisfy the convenient recursion relation 

rzn+lb, = (2n + l)-l[(p2 - ro2)l12 pzn + 2nro2 * r~(n-l)+lb,-l]. 0 (24) 

When the program is first called, the an are evaluated (typically, ten are used); then, 
whenever A* are required, Eqs. (23) and (24) are used to find the corresponding AT%. 

Because of our assumption that A(r) can be approximated by a polynomial, the 
present version of NEUCG will not work properly when A(r) varies too rapidly as, 
for example, it would if n,(r) or ni(r) were step functions. Caution should be exercised 
in attempting to run such cases. However, any n,(r) and q(r) smooth enough to be 
properly approximated on the 100 point grid typically used in plasma transport 
codes should not pose any problem for the A(r) and AT(x, v) algorithms. 

The method for calculating the ionization rate a and charge exchange rate C should 
also be mentioned. The fits to the Maxwellian rate coefficients developed by Freeman 
and Jones [4] are used. Notice that LX = cx(T,(r)) while C = C(T,(r)). By allowing C 
to depend on T,, we rectify some of the error that our original approximation of 
va,,(v) = constant may have caused. 

One final point needs to be made. At present, the code will only handle the problem 
of one hydrogen isotope moving through a plasma whose ions are of the same isotope. 
Thus, tritium transport in a tritium plasma will be properly calculation, but tritium 
in a deuterium plasma will not be. 

5. TEST RUNS OF NEUCG 

Comparisons runs were made on a UNIVAC 1110 and a DEC-10 to search for 
differences between the answers from NEUCG and the neutron transport code 

58112711-7 
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DTFX, a variant of DTF-IV [14]. DTFX is a multigroup, discrete ordinates neutron 
transport code. The results for n(r) and w,(r) are shown in Figs. 1 through 3 for 
various plasma density and temperature profiles. For these cases, the DTFX runs 
used the same W,,(U) = C(T,) assumption that is used in NEUCG. The agreement 
between the results of the two codes is quite good, with the agreement for n(r) being 
better than 10 % on the average while that for w,,(r) is better than 5 %. 

In the uniform plasma temperature cases in Figs. 1 and 2, the execution time for 
DTFX is about three times that for NEUCG. In the nonuniform temperature case 
of Fig. 3, which is more similar to the plasma transport code environment, DTFX is 

rlcm) 

FIG. 1. Neutral density and average energy as calculated by NEUCG (solid line) and DTFX 
(dashed line) for the case n, = ni = lOI* cm-8, T, = Ti = 100 eV, T, = 1 eV, T,, = 1Ol6 cm-* 
xc-l, and RD = 0. Plasma radius a is 45 cm. 

about a factor of 6 slower. Accordingly, the present code represents a significant 
savings in execution time. In addition, although studies were made to optimize the 
number of spatial intervals, energy, and angular groups used, DTFX still required 
55K storage on the UNIVAC-1110 for the case shown in Fig. 3. For the same case 
and machine, NEUCG used 6K. 

It is interesting to note that the w,(r) profile in Figs. 1 and 2 show that it is possible 
to have w, > Ti . In other words, in this case the neutrals would cool the ions at the 
edge, but heat them in the center. This is not what one would first expect. It is caused 
by the fact that the plasma acts as a velocity filter, i.e., those particles with higher 
speeds travel farther. Accordingly, the neutral population near r = 0 is enriched in 
high energy particles, causing the rise in w, . However, this rise in w, is not too fast, 
for we see in Fig. 3 that w,(r) < Ti(r). Since Fig. 3 is closer to the real tokamak case, 
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FIG. 2. Plots as in Fig. 1 but for n, = g = (5 - 4 ra/aa) x 1018cm-s. AI1 other parameters 
are those of Fig. 1. 

0 IO 20 30 40 50 

FIG. 3. Plots as in Fig. I but for n, = ni = (5 - 4 rain*) x 1Ol8 cm-a and T, = T, = (1.0 - 
0.9 ra/as) keV. All other parameters are those of Fig. 1. Also shown is the plasma temperature (dot- 
dashed lines). 
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it will probably be the case that the neutrals usually cool the ions. However, it is 
possible for the neutrals to locally heat the ions. 

In Fig. 4, examples are given of the code option which returns the distribution 
function of outgoing neutrals at the plasma edge. The code will evaluate the distri- 
bution function f(a, v) at various values of v specified by 

V x= v sin e cos 4, 
v, = v sin e sin f$, 
v, = v cos 8, 

where v = (2E/m)li2, and E is the particle energy. Knowing this, one can calculate 
the neutral flux per unit energy per unit solid angle as is shown in the figures. 

ENERGY (KeV) 

FIG. 4. Plot of the specific flux (flux/unit energy/unit solid angle) versus particle energy for the 
case in Fig. 2 (left-hand curve) and in Fig. 3 (right-hand curve). The flux is evaluated at the surface 
of the plasma for those particles whose velocity is normal to the surface. 

Employing the true cross section for charge exchange, Pfeiffer [15] has made 
calculations using DTFX to investigate how large an error is produced by our 
approximation of that cross section. He has found that the n(v) values in the outer 
portion of the plasma agree quite well while those in the center may be off by a factor 
of two at worst. Hence, in the region where the neutrals are relatively numerous, the 
present code does an adequate job of calculating their behavior. 

APPENDIX A 

In this section, the actual analysis leading from the Boltzmann transport equation 
to the integral equation for n(r) will be carried out. The derivation is similar to 
others used to obtain the integral transport equation [16]; however, since the reaction 
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rates in this problem are independent of the neutral velocity, the final answer can be 
cast in a simpler form. The derivation is done using velocity variables, rather than 
energy and angle variables [16], since the invariance in the z direction makes a, an 
ignorable coordinate, thus simplifying the computation. 

Combining Eqs. (2) and (3) in the text, the equation we wish to integrate is 

r  

v, cos w f - $ sin w g = --A(r)f(r, w, 0, , D,) + B(r) F(r, v) w(r). (A.l) 

The boundary condition of interest is 

To effect the integration, we need to use the characteristic coordinates of the 
differential operator in Eq. (A.l). These are 

X = r cos w, 
(A-3) 

Y = r sin w. 

They transform the left-hand side of Eq. (A.l) to v, af/iaX. For simplicity, we will 
assume thatf,(v) and F(r, v) are independent of w. 

Integrating Eq. (A.l), and employing Eq. (A.2), we have 

x FM& 0, 21, , 0,) &a VI (A-4) 

where 

p(& Y) = (P + yy. 

In Eq. (A.4) we have an important intermediate step in our derivation. This equation 
will allow us to calculate the neutral distribution function once n(r) is known. 
Consequently, we can find any moment of the distribution function that we require. 

We now wish to integrate Eq. (A.4) over the velocity variables to obtain the 
integral equation. First we will perform the o integral. Employing the symmetry in w, 
we find 
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I 2n dwf@, w, 21, , 4 = 2 li2 dw [f(X Y, u, , 4 + f(-X, Y, u, , u,)] 
0 

= xl(% 9 uz> iv” dw exp I- $ A&a2 - Y2)lj2, Y]/ 

x /exP [~4K Y,] + exp [- +A#, Yl]l 
I T 

+ 2 lon/2 do j'"'-'""i' 

-(,Z-yzpiz 
d5‘ exp [ - $ I A&C Y> - A&, Y)l] 

x Bb’,5, n1 eP(5, n u, 2 4 MP(~, Y)l (A-5) v 

where AT(X, Y) is defined in Eq. (11) in the main text. 
We now perform the following changes of variable in the second integral in 

Eq. (A.5). First, using the symmetry in 4 and the definition p = (.$” $ yZ)lj2, convert 
the t integral to one over p. Then make the substitution r sin w = p< sin 0 in the w 
integral and exchange the order of 8 and p integrals, taking care to put the proper 
limits on each. (The quantity p< is defined in Eq. (9).) After this, we may integrate 
over u, and u, to finally obtain 

n(r) = 2 low u, du,fo(uT) jon” dw [exp [ - ‘+(a;: @) ] 

+ exp [- 
Ua, r, 0) 

1’, ] 1 + 2 joa dp PWP) 4~) jot 6 J-h 4 

X s 

a/2 d0 
o (P>~ - pc2 sin” 13)li2 exp - i [ 

A+(P> 9 P< 3 0) 
c, I 

+ exp [ - A-(P>; p< ’ 4 ] 1 
7 (A.@ 

where A* are defined in Eq. (10) and fo(u,) and P(p, u,) are fo(u, , u,) and F(p, v, , 0,) 
integrated over u, . 

Equation (A.6) is the result we were seeking. To further simplify the integrals, 
forms for fo(u,.) and F(p, ur) must be chosen. When these are Maxwellian, the main 
text results are obtained. 

APPENDIX B 

The normalization step in the normalized Gauss-Seidel iteration adjusts the trial 
solution to insure particle conservation. The basic conservation equation is 

a&4 = - joa 4 ~dp) 4~) 4~) (B.1) 
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where I’@) is the neutral flux at r = a. This is, of course, just the integrated form of 
the continuity equation. 

I’(a) is the net flux, the difference of the inward going (I’-) and outward going (I’+) 
single-sided fluxes. For the case R, = 0, we have for the first 

= 2 j-@= dt;, u,2f&,) 
0 

03.2) 

while the second is given by 

r+ = 2~mdv,a,2~-~d,~‘2dwf(a,w,~,,~,)cosw. (B.3) 

Employing the form forffrom Eq. (A.4) and using the same changes of variables as 
were used to obtain Eq. (A.6), we may express I’+ in terms of integrals over n(r) and 
J,(Q). Consequently, Eq. (B.l) can be rewritten as 

i la dp pB(p) n(p) lam dv, v,F(p, UJ Lff’2 de [exp [- A+(:T” “1 

+exp[- A-(41p, “]/ + ; J; 4 PG(P) 4~1 W 

= 2 Srn du, u,2fo(u,) 1 I - IT” dw cos w exp [ - ‘+(‘ip, w, ] 1. (B.4) 
0 0 

Notice that the right-hand side of Eq. (B.4) is independent of n(r) while the left 
depends on integrals over it. Any trial solution n*(r) can be renormalized to conserve 
particles by calculating the left- and right-hand sides of Eq. (B.4) separately and then 
multiplying n*(r) by the factor needed to make them equal. 

For the case considered in the code wheref,(v) and F(r, v) are Maxwellian, Eq. (B.4) 
reduces to 

; s,a dp $$ n(p) LW’2 d6’ ,[G1 f+(4:,p, “‘1 + G, (A-(:Tfy ‘))I 

=z[l -2f’2dwcoswGe( A+(;wa,w))]. (B.5) 

Performing the p integrals in Eq. (B.5) by Lobatto quadrature is straightforward, 
since both integrands are well-behaved. 
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